Résumé : A review is given of recently published and new data on Avalonia east of the Midlands Microcraton. The three megasequences from Cambrian to mid Devonian described in Wales and Welsh Borderland are also present east of the Midlands Microcraton (Brabant Massif, Condroz, Ardennes, Remscheid and Ebbe inliers, Krefeld high). The three mega-sequences are caused by a tectonic driving mechanism and are explained by three different geodynamic contexts: an earlier phase with extensional basins or rifting and rather thick sequences, when Avalonia was still attached to Gondwana; a second phase with a shelf basin with moderately thin sequences when Avalonia was a separate continent and a later phase with a shelf or foreland basin development and thick sequences. Deformation of the megasequences 1 and 2 or 1 to 3 varies between areas. In Wales and the Lake District the Acadian phase is long-lived and active from early to mid Devonian. In the Ardennes inliers a deformation is active between the late Ordovician and the Silurian (Ardennian Phase), with a similar intensity as the core of the Brabant Massif, when present erosion levels are compared. The Brabant Massif is partly deformed by the long-lived Brabantian Phase from late Silurian till early mid Devonian. Both the Ardennes inliers and the Brabant Massif are not classic orogenic belts, only slate belts where no more than the epizone is reached at present erosion levels. Areas supposedly close to the microcraton or basement are nearly undeformed (SW Brabant Massif and central Condroz). A model of anticlockwise rotation of Avalonia of about 55° from Caradoc to Emsian is proposed to explain the deposition setting of megasequence 3 and the subsequent Acadian and Brabantian deformation. Immediately after the Avalonian microcontinent touched Baltica in Caradoc times it created a short-lived subduction magmatic event from The Wash to the Brabant Massif and soon after the magmatism ended a foreland basin developed. Possibly during and after that development a long-lived and slow compressional event occurred, leading to the deformation of the Anglo-Brabant Deformation Belt. In the early Devonian, contemporaneous with the shortening of the Anglo-Brabant Deformation Belt, extension occurred in the Rheno-Hercynian Zone, possibly caused by the same slow rotation of Avalonia. More evidence emerges that Avalonia cast of the Midlands Microcraton comprises not one but probably two terranes: the remnant of the palaeocontinent Avalonia, and what is called the palaeocontinent Far Eastern Avalonia; the latter is only occasionally observed in the few deep boreholes into the Heligoland-Pomerania Deformation Belt, in southern Denmark, NE Germany and NW Poland, with scant available indirect data in between indicating only Proterozoic basement and no Caledonian deformation. For Far Eastern Avalonia a similar palaeogeographical history is postulated as Avalonia, with rifting from Gondwana in Arenig or earlier times, collision with Baltica before the mid-Ashgill and deformation between the late Ordovician and latest Silurian. The Avalonia concept might need to be expanded to an 'Avalonian Terrane Assemblage' with cratonic cores and small short-lived oceans as in the Armorican Terrane Assemblage.