par Woodhead, Erik
Référence Physical Review A, 90, page (022306)
Publication Publié, 2014-08-06
Article révisé par les pairs
Résumé : Local randomization is a preprocessing procedure in which one of the legitimate parties of a quantum key distribution (QKD) scheme adds noise to their version of the key and was found by Kraus et al. [Phys. Rev. Lett. 95, 080501 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.080501] to improve the security of certain QKD protocols. In this article, the improvement yielded by local randomization is derived for an imperfect implementation of the Bennett-Brassard 1984 (BB84) QKD protocol, in which the source emits four given but arbitrary pure states and the detector performs arbitrarily aligned measurements. Specifically, this is achieved by modifying an approach to analyzing the security of imperfect variants of the BB84 protocol against collective attacks, introduced in [Phys. Rev. A 88, 012331 (2013)PLRAAN1050- 294710.1103/PhysRevA.88.012331], to include the additional preprocessing step. The previously known improvement to the threshold channel noise, from 11% to 12.41%, is recovered in the special case of an ideal BB84 implementation and becomes more pronounced in the case of a nonideal source. Finally, the bound derived for the asymptotic key rate, both with and without local randomization, is shown to be tight with the particular source characterization used. This is demonstrated by the explicit construction of a family of source states and optimal attacks for which the key-rate bound is attained with equality. © 2014 American Physical Society.