Résumé : We propose a new formulation of optimal and local control algorithms which enforces the constraint of time-integrated zero-area on the control field. The fulfillment of this requirement, crucial in many physical applications, is mathematically implemented by the introduction of a Lagrange multiplier aiming at penalizing the pulse area. This method allows one to design a control field with an area as small as possible, while bringing the dynamical system close to the target state. We test the efficiency of this approach on two control purposes in molecular dynamics, namely, orientation and photodissociation.