Résumé : This paper describes a field-scale experiment on gas transport mechanisms performed at Andra's Underground Research Laboratory (URL) in a clay rock. The experimental layout consists of two parallel boreholes that are equipped with multiple packer completions isolating three intervals each, which have been continuously monitoring the pore pressure evolution of the clay rock. Nitrogen gas was injected in the middle test interval of one of the boreholes at increasing rates. The entire gas test comprised six periods of controlled gas injections, each followed by a shut-in pressure recovery phase. The experimental data are presented along with their interpretation by means of numerical modelling of two-phase flow of gas and water using different numerical codes and different geometrical approaches that include axisymmetric, half-space and full 3D models. An iterative modelling process was used to show step-by-step how an accurate description of each component of the experiment system produced a satisfactory reproduction of the experimental data and an improved understanding of the relevant phenomena. For instance, the initial volume of remaining water in the test interval, and the presence of a damaged zone around the boreholes, was important for the models to obtain good agreement with the field data.