par Lei, Haile ;Hou, Quing ;Hou, Marc
Référence Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms, 164, page (537-545)
Publication Publié, 2000-04
Article révisé par les pairs
Résumé : The slowing down of copper clusters formed by 440 atoms on a gold (1 1 1) surface is studied in detail by means of molecular dynamics. The atomic classical molecular dynamics is based on the second moment approximation of the tight binding model and, in addition, accounts for the electron-phonon coupling in the frame of the Sommerfeld theory of metals. The slowing down energy range is 0-1 eV/atom, which is characteristic of low energy cluster beam deposition (LECBD). A pronounced epitaxy of the copper clusters is found. However, their morphology is significantly energy dependent. The structure and the radial pair correlation functions are used to study the details of the epitaxial properties as well as the pronounced relaxation in the interfacial cluster atom positions due to the lattice mismatch between copper and gold. The effect of the cluster and substrate average temperature is investigated and can be distinguished from the kinetic effect of the cluster impact.