Article révisé par les pairs
Résumé : Reproduction systems are controlling the creation of new genetic variants as well as how natural selection can operate on these variants. Therefore, they had historically been one of the main foci of evolutionary biology studies. The little fire ant, Wasmannia auropunctata, has been found to display an extraordinary reproduction system, in which both males and female queens are produced clonally. So far, native sexual populations of W. auropunctata have not been identified. Our goals were to identify such sexual populations and investigate the origins of female parthenogenesis and male clonality. Using mitochondrial DNA and microsatellite markers in 17 native populations, we found that traditional sexual populations occurred in W. auropunctata and are likely the recent source of neighboring clonal populations. Queen parthenogenesis has probably evolved several times through mutational events. Male clonality is tightly linked to queen parthenogenesis and thus appears to be female controlled. Its origin could be accounted for by 2 mutually exclusive hypotheses: either by the expected coevolution of the 2 sexes (i.e., a variant of the maternal genome elimination hypothesis) or by a shared mechanistic origin (i.e., by the production of anucleate ovules by parthenogenetic queens). Our results also show that W. auropunctata males and females do not form separate evolutionary units and are unlikely to be engaged in an all-out battle of sexes. This work opens up new perspectives for studies on the adaptive significance and evolutionary stability of mixed sexual and clonal reproduction systems in living organisms.