Résumé : The secondary structure, orientation and hydrogen/deuterium exchange of SP-C33, a surfactant protein C analog, in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/egg phosphatidylglycerol (8:2, wt./wt.) bilayers, was studied by attenuated total reflection Fourier transform infrared spectroscopy. This showed a transmembrane α-helix, in which about 55% of the amide hydrogens do not exchange for up to 20h. Moreover, C-terminally modified SP-C33, either truncated after position 30, or having the methionine at position 31 exchanged for either lysine or isoleucine, showed the same secondary structure and orientation. The different peptides, suspended in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol 68:31 (wt./wt.), were tested for surfactant activity in vitro in a captive bubble surfactometer and in vivo in an animal model of respiratory distress syndrome using premature rabbit fetuses. All preparations showed similar surface activity in the captive bubble surfactometer. Also, in the rabbit model, all preparations performed equally well and significantly better than non-treated controls, both regarding tidal volumes and lung gas volumes. Thus, truncation or residue replacements in the C-terminal part of SP-C33 do not seem to affect membrane association or surfactant activity.